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Abstract. Differential evolution (DE) is a powerful and simple algo-
rithm for single- and multi-objective optimization. However, its perfor-
mance is highly dependent on the right choice of parameters. To mitigate
this problem, mechanisms have been developed to automatically control
the parameters during the algorithm run. These mechanisms are usually
a part of a unified DE algorithm, which makes it difficult to compare
them in isolation. In this paper, we go through various deterministic,
adaptive, and self-adaptive approaches to parameter control, isolate the
underlying mechanisms, and apply them to a single, simple differential
evolution algorithm. We observe its performance and behavior on a set
of benchmark problems. We find that even the simplest mechanisms can
compete with parameter values found by exhaustive grid search. We
also notice that self-adaptive mechanisms seem to perform better on
problems which can be optimized with a very limited set of parameters.
Yet, adaptive mechanisms seem to behave in a problem-independent way,
detrimental to their performance.

Keywords: differential evolution, multi-objective optimization, param-
eter control, comparative study

1 Introduction

Differential evolution (DE) [14] is a simple to understand, but nevertheless pow-
erful optimizer. However, its performance is highly sensitive to the choice of
parameters. Moreover, this dependency changes from problem to problem. Se-
lection of well performing fixed parameters for a particular optimization problem
is a relatively little understood subject, especially in the multi-objective realm.
This motivated many researchers to develop techniques to set the parameters
automatically, during the run of the DE algorithm.

According to the taxonomy in [5], parameter setting techniques are divided
into parameter tuning, which happens before the run, and parameter control,
which happens during the run. The former is a subset of a larger field, called
algorithm configuration, which is itself a deeply researched subject [8]. In this
work however, we study only parameter control mechanisms.
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Parameter control (PC) techniques are further divided into deterministic,
adaptive, and self-adaptive. Deterministic techniques apply the parameters ac-
cording to a given rule, while ignoring any feedback from the search process.
Adaptive techniques continually update their parameters using feedback from
the population. Self-adaptive techniques attach different parameters to each in-
dividual. These parameters undergo mutation and recombination along with the
individuals. Better parameter values lead to individuals with a higher chance to
survive and therefore have a higher chance to propagate to the next generation.

Each mentioned paradigm of parameter control is represented by numerous
algorithms in the literature. One of the first attempts to control parameters in
DE is the (multi-objective) SPDE algorithm [1] belonging to the self-adaptive
category. An adaptive mechanism based on population diversity for both single-
and multi-objective DE has been proposed by Zaharie in [19]. The use of fuzzy
controllers to adapt the parameters has been proposed by Liu et al. [11] The
SaDE algorithm [15], originally proposed for single-objective DE, adapts the used
DE strategies as well as the parameters. SaDE, which is an adaptive algorithm
according to our classification, has been generalized to multi-objective realm and
subsequently improved to OW-MOSaDE [6]. A comparison of single-objective
adaptive and self-adaptive methods is presented in [2] and in [3].

A typical modern multi-objective algorithm is in fact an orchestra of sub-
algorithms, each playing its own instrument. There is a sub-algorithm to initialize
the population, a sub-algorithm to select individuals for reproduction, a sub-
algorithm to maintain diversity, and so on. Various techniques for parameter
control are usually published as a part of a unified production-ready algorithm.
Apart from the parameter control mechanism, this algorithm usually has its own
sub-algorithms to perform tasks not related to parameter control. These sub-
algorithms usually vary from algorithm to algorithm and make the comparison
of algorithms difficult, since it is not clear if the difference in performance should
be attributed to the parameter control mechanism itself, or to the difference in
sub-algorithms. For example, to estimate diversity of an individual, the OW-
MOSaDE algorithm [6] uses the harmonic average distance measure, while the
JADE2 algorithm [21] uses the product of distances. In order to isolate these
effects, we implement all the parameter control methods within a simple multi-
objective DE algorithm DEMO [16].

In this paper, we want to find out if some parameter control paradigm is
inherently better in terms of performance and whether the parameter control
mechanisms can find favorable parameters in problems which can be success-
fully optimized only with a limited set of parameters. We are also interested in
finding an explanation of the observed performance. We do this by observing
the evolution of parameters used by the parameter control methods through-
out the optimization process. For this paper, we tried to choose representative
examples from each group. We compare one deterministic, three adaptive, and
four self-adaptive methods. Some of the methods we present here are originally
used only for single-objective optimization, but they can be easily adopted to
multi-objective optimization, which we do in this paper.
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We conclude, that self-adaptive methods are the most robust methods, while
performing on a par with the best fixed parameter settings. We found out that
adaptive methods may have big problems to find good parameters. Moreover,
they seem to adapt their parameters in patterns independent of the problem.

However, our conclusions come from empirical results with a single (DEMO)
algorithm. It is possible, that applying the studied PC mechanisms to a different
algorithm may yield very different results. Such was the case in [13] where the
authors studied parameter control in ant colony optimization algorithms.

In the following section we introduce the various mechanisms we use in this
work. In Section 3 we explain the details of our experimental setup. In Section 4
we discuss and interpret the empirical results and we conclude in Section 5.

2 Approaches to Parameter Control in DE

In this section we describe DE in more detail and introduce its parameters. Then
we introduce the mechanisms that we examine in this paper.

2.1 Differential Evolution Parameters

The fundamental principle of DE is to create new individuals by adding scaled
differences of individuals to each other. Let P = {X1, ..., XNP}, where Xi =
(xi,1, . . . , xi,n) ∈ Rn, be the population. In its most basic form, DE traverses
through P , attempting to improve each individualXtarget by generating a new in-
dividualXtrial in the following way: First, three distinct individuals,Xr1 , Xr2 , Xr3

are chosen from P . Then a scaled difference of two of these individuals is added
to the third one and an intermediate individual Xmutant is created:

Xmutant := Xr1 + F(Xr2 −Xr3). (1)

The scaling factor F is the first parameter of DE. Then the Xtrial is generated by
randomly inheriting variables from either Xmutant or from Xtarget. One variable
with a randomly chosen index inv is automatically inherited from Xmutant to
avoid generating a copy of Xtarget. This is described in (2), where randU(0, 1) is
a generator of uniformly randomly distributed numbers in [0; 1].

xtrial,i :=

{
xmutant,i if randU(0, 1) < Cr or i = inv

xtarget,i else
(2)

The number Cr in (2) is the second parameter of DE and it is called the crossover
probability. Cr controls the proportion of variables that are perturbed in an
incumbent individual Xtarget to create a new individual. When Cr = 0, only one
variable changes at a time, hence Cr = 0 is well suited for separable problems.

Very significant work on understanding the theoretical properties of F and
Cr has been done by Zaharie in [18]. An empirical analysis has been performed
by Kukkonen in [10]. The population size NP is also considered a parameter of
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DE, and there have been attempts to adapt the population size as well [17], but
in this paper we restrict ourselves to parameters F and Cr. Moreover, strategies
to generate Xtrial, different than the one in (1) and (2) have been proposed, but
in this work we shall consider only the default strategy. Next, we present all the
parameter control mechanisms that we consider in this study.

2.2 Deterministic Mechanism for Parameter Control

The MDDE algorithm [22] initializes the parameters as relatively big values
F0,Cr0, to prevent premature convergence. Then it monotonically decreases
them with respect to the generation g, in a geometric sequence, according to:

Fg := F0 exp(−a0
g

gmax
)

Crg := Cr0 exp(−a1
g

gmax
),

where gmax is the maximum number of generations.

2.3 Adaptive Mechanisms for Parameter Control

JADE2 The adaptive mechanism in the JADE2 algorithm generates new values
of F and Cr for each new Xtrial. If a particular Xtrial Pareto dominates the
Xtarget, the combination of F and Cr which generated the Xtrial is recorded as a
successful one. The values of F are generated from a Cauchy distribution with
median µF and scale γ = 0.1, the values of Cr from a normal distribution with
mean µCr and σ = 0.1. At the end of each generation, the parameters of these
distributions are updated using the following rules:

µF := (1− c)µF + c.avgL(Fs)

µCr := (1− c)µCr + c.avgA(Crs),

where c ∈ [0; 1] is a learning factor, avgL(Fs) is the Lehmer mean of all successful
F’s and avgA is the arithmetic mean of successful Cr’s in the previous generation.
In our experiments we used c = 0.1, as recommended by the authors.

OW-MOSaDE Objective-wise MOSaDE [6] attempts to learn which value of
Cr is good for a particular objective. For each objective fi ∈ (f1, . . . , fm) OW-
MOSaDE holds one value of µi,Cr. These values are updated at the end of each
generation if the Xtrial generated by a particular Cr improves objective fi. In
addition, a master µCr is updated if all objectives are improved simultaneously.
At each generation, one of these m + 1 values is randomly chosen to serve as
the mean of a normal random distribution with σ = 0.1, which is sampled to
generate the values of Cr. That is, each generation the algorithm concentrates
on either one randomly chosen objective or attempts to improve all objectives
at once. As opposed to JADE2, there is no learning factor, but the successful
values of Cr are retained for lp generations, where lp = 50 is a learning period.
The value F is not adapted, but generated randomly from a fixed set of normal
distributions for each individual.
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Control of Diversity Adaptation Algorithm (PDCaDE) Zaharie discov-
ered a simple algebraic relationship between the expected variance of the DE
population before and after the generation of new individuals [18]. Based on
these results, she developed an algorithm which monitors the variance of the
population in the decision space and alters the parameters according to this re-
lationship, so that the variance of the population decreases in a specified, steady
manner throughout the entire run. The motivation is to prevent premature con-
vergence and to use the allocated budget of generations evenly.

The algorithm does not have a specific name, so we call it Population Di-
versity Control Adaptive DE (PDCaDE) in the rest of this article. PDCaDE
introduces a new parameter γ, which we held constant at γ = 1.25 for all our ex-
periments. This value was determined by some limited tuning, since the author
does not provide a recommendation for multi-objective problems.

2.4 Self-adaptive Mechanisms for Parameter Control

The main idea behind self adaptive mechanisms is that each individual carries
the set of parameters by which it was created. This way, if an individual is created
by a good set of parameters and survives into the next generation, the parameters
it carries survive too. Conversely, bad parameter combinations get pruned away.

In all self-adaptive DE mechanisms considered in this paper, the principle is
the same. New individuals Xtrial are generated using (1) and (2), where the F and
Cr are not fixed, but replaced by Ftrial and Crtrial. These values are generated
on the spot and then carried by the newly generated Xtrial. Let us denote by
Fi and Cri the parameter values carried by individual Xi. Then the methods to
generate Ftrial and Crtrial can be described by simple equations in Table 1.

3 Experimental Design

3.1 Algorithmic Framework

Algorithm 1 shows the unified framework used to compare the selected parameter
control mechanisms. The lines that apply only to self-adaptive mechanisms are
highlighted in yellow, while the ones that apply only to adaptive mechanisms
are highlighted in purple.

If we want to draw conclusions about PC mechanisms in general using this
methodology, we rely on the following assumption: Let A,B be two PC mecha-
nisms and X,Y be two DE algorithms. If X(A) (algorithm X with mechanism
A) is better than X(B) in some regard, then Y (A) is better than Y (B). Surely
the validity of this assumption depends on many factors. Some research in this
direction has been done in [13]. Since all our experiments are performed within
this single algorithm, the most important task for future work is to explore the
validity of our assumption.

Some methods have their own parameters, which we held constant at the
values recommended by their authors. Some methods also use several strategies
to generate new individuals, but in this work we limited ourselves to the default
strategy described in Equations (1) and (2).
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Table 1: Summary of used self-adaptive mechanisms

Name Main formula additional parameters

SPDE [1] Ftrial := randN(0, 1) Crinit := randN(µ, σ)

Crtrial := Crr1 + randN(0, 1)(Crr2 − Crr3) µ = 0.5, σ = 0.15

jDE [3] Ftrial :=

{
randU(0.1, 1.0) if randU(0, 1) < τ1

Ftarget else
τ1 = 0.1

Crtrial :=

{
randU(0.1, 1.0) if randU(0, 1) < τ2

Crtarget else
τ2 = 0.1

DEMOwSA Ftrial =
Fi+Fr1

+Fr2
+Fr3

4
eτrandN(0,1) τ = 1√

2n

[20] Crtrial =
Cri+Crr1+Crr2+Crr3

4
eτrandN(0,1)

SAMDE [12] Ftrial = Fr1 + F′(Fr2 − Fr3) F′ := randU(0.7, 1.0)

Crtrial = Crr1 + F′(Crr2 − Crr3)

randN(µ, σ) - generator of normal random numbers

randU(a, b) - generator of uniform random numbers

Algorithm 1: Adaptive and self-adaptive DEMO [16] algorithm

1 initialize P = {X1, ..., XNP} uniformly randomly in the decision space

2 initialize F and Cr generators

3 initialize values of Fi and Cri for i = 1, . . . ,NP
4 for generation := 1 to Gmax do Evolutionary loop
5 for target := 1 to NP do Generational loop

6 generate Ftrial and Crtrial

7 compute Ftrial and Crtrial using Table 1
8 generate Xtrial using Ftrial and Crtrial from (1) and (2)

9 attach Ftrial and Crtrial to Xtrial

10 project Xtrial to decision space
11 if Xtarget dominates Xtrial then
12 discard Xtrial

13 else if Xtrial dominates Xtarget then
14 replace Xtarget with Xtrial

15 else if Xtarget and Xtrial are mutually non-dominated then
16 add Xtrial to the end of the population
17 end

18 update success memories

19 end

20 update parameter generators
21 Trim P to size NP using non-dominated sorting [16] and MNN diversity [9]

22 end
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Table 2: Characteristics of the selected WFG problems

WFG4 WFG6 WFG7 WFG9

separable yes no yes no
unimodal no yes yes no

3.2 Problems

WFG problems To test the mechanisms in various conditions, we chose a
subset of the WFG [7] test suite with the same concave Pareto front and all pos-
sible combinations of separability and modality characteristics. These problems
are summarized in Table 2. We held the number of variables fixed at 10 and
performed tests for 2 and 3 objectives.

Quadratic problems As we shall later see, even the non-separable multi-
modal WFG problems can be successfully optimized using many combinations
of fixed parameters. To test the ability of parameter control mechanisms to
solve challenging problems we developed a scalable problem, that can be solved
by relatively few combinations of F and Cr, called Q. The problem Q consists
of m functions: Q = (q1, . . . , qm). Each function is a quadratic form qm(X) =
(X − cm)Dm(X − cm)T where

D1 = diag(1, 2, 4, . . . , 2n−1),

D2 = diag(2n−1, 1, 2, . . . , 2n−2),

. . .

and the vectors ci are generated uniformly randomly in a unit sphere. The
resulting problem is then rotated in the decision space around all n− 2 rotation
subspaces by 45 degrees. 1 Moreover, the population for this problem is generated
randomly uniformly in a sphere of radius 210 which is shifted from the origin in
a random direction by 214. In this work, we explore the Q problem for 2, 3, and
4 objectives, while the number of variables remains fixed at 10.

3.3 Observed Statistics

We are interested in the performance of the various methods as well as in their
behavior. To measure the performance, we use the hypervolume [23] metric,
since it measures both convergence and diversity of the resulting Pareto front
approximation. As a reference point for both types of problems we first construct

1 Details on this methodology can be found in [4].
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(a) WFG4 (S-MM) (b) WFG6 (S-UM) (c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Fig. 1: Average normalized hypervolume for 2 objectives

(a) WFG4 (S-MM) (b) WFG6 (S-UM) (c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Fig. 2: Average normalized hypervolume for 3 objectives

the hyperbox which contains the entire true Pareto front and add a unit vector
to its upper corner.

In order to simplify the interpretation of the hypervolume, we normalize it by
dividing it by the maximal attainable hypervolume in the case of WFG problems,
and by the volume of the hyperbox between the origin and the reference point
for the Q problem. This way we know that the maximal attainable normalized
hypervolume, corresponding to complete convergence is 1.

In order to observe the behavior of the mechanisms, we log each combination
of F and Cr that the algorithm uses in one generation.

4 Results and Discussion

4.1 Parameter Tuning

For each problem we performed a preliminary tuning of the F and Cr parameters
by grid search. We explored the ranges F ∈ [0.05; 1.5] and Cr ∈ [0; 1] with a
resolution of 0.05. For each combination of parameters, we ran 10 independent
runs of Algorithm 1 with fixed parameters. The average normalized hypervolume
from this tuning is presented in the form of heat-maps, with hot colors meaning
good performance. The tuning results for the WFG problems are in figures 1
and 2. In each figure we see a bright, L-shaped region of favorable values. Some
theoretical explanation of the shape of this region can be found in [10] and [4].
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Table 3: Average normalized hypervolume for the WFG problems

2 objectives

WFG4 WFG6 WFG7 WFG9

start 0.774 (1.2e-02) 0.618 (1.5e-02) 0.706 (8.6e-03) 0.666 (2.2e-02)

ideal 0.999 (6.9e-05) 0.999 (5.9e-04) 0.999 (3.5e-04) 0.996 (1.4e-03)

MDDE 0.998 (3.4e-04) 0.820 (8.6e-04) 0.999 (7.5e-06) 0.905 (8.3e-02)

a
d
a
p
ti

v
e JADE2 0.999 (7.2e-06) 0.992 (4.4e-03) 0.999 (1.0e-05) 0.996 (8.7e-04)

OW-MOSaDE 0.997 (6.6e-04) 0.975 (6.4e-03) 0.999 (9.1e-06) 0.993 (2.0e-03)

PDCaDE 0.998 (1.7e-03) 0.980 (7.1e-03) 0.999 (4.9e-05) 0.993 (2.2e-03)

se
lf

-a
d
a
p
ti

v
e DEMOwSA 0.998 (2.9e-04) 0.991 (3.8e-03) 0.999 (2.1e-05) 0.989 (3.5e-03)

jDE 0.999(7.5e-06) 0.985 (1.7e-02) 0.999 (1.4e-05) 0.996 (1.0e-03)

SAMDE 0.999 (8.0e-06) 0.980 (1.4e-02) 0.999 (1.5e-05) 0.995 (9.5e-04)

SPDE 0.999 (1.1e-05) 0.970 (1.1e-02) 0.999 (8.8e-06) 0.996 (4.7e-04)

3 objectives

WFG4 WFG6 WFG7 WFG9

start 0.669 (1.9e-02) 0.563 (8.9e-03) 0.646 (1.0e-02) 0.575 (2.0e-02)

ideal 0.987 (2.2e-04) 0.983 (1.6e-03) 0.988 (1.1e-04) 0.976 (2.9e-03)

MDDE 0.978 (6.7e-04) 0.807 (3.6e-02) 0.986 (1.4e-04) 0.892 (8.4e-02)

a
d
a
p
ti

v
e JADE2 0.982 (4.3e-04) 0.977 (3.5e-03) 0.978 (4.5e-04) 0.965 (1.9e-03)

OW-MOSaDE 0.968 (1.3e-03) 0.971 (8.3e-03) 0.977 (5.2e-04) 0.961 (1.6e-03)

PDCaDE 0.974 (2.6e-03) 0.966 (8.4e-03) 0.979 (9.6e-04) 0.962 (2.2e-03)

se
lf

-a
d
a
p
ti

v
e DEMOwSA 0.972 (1.0e-03) 0.979 (1.6e-03) 0.975 (9.3e-04) 0.959 (1.8e-03)

jDE 0.982 (7.0e-04) 0.967 (1.3e-02) 0.981 (5.3e-04) 0.968 (2.7e-03)

SAMDE 0.983 (5.8e-04) 0.968 (8.8e-03) 0.977 (5.4e-04) 0.963 (1.5e-03)

SPDE 0.985 (6.6e-04) 0.964 (1.1e-02) 0.980 (3.8e-04) 0.965 (1.6e-03)

4.2 Parameter Control on WFG problems

For each of the studied methods we ran 50 independent runs with a fixed pop-
ulation size (NP) of 500 individuals. Each run was limited by 500 generations.
The average normal hypervolume along with the standard deviation across the
50 runs is presented in Table 3. The value of normalized hypervolume at the
start of the run is denoted as start. For each problem, based on the initial tun-
ing, we constructed an ideal set of fixed parameters and ran the algorithm for
50 independent runs with these settings. Within the group of adaptive methods
and the group of self-adaptive methods we marked the highest value in bold.

We can see that both adaptive and self-adaptive methods are performing al-
most on a par with the ideal parameter set. The only exception is the determin-
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Deterministic DE MDDE
Adaptive DE JADE2

(a) WFG4 (S-MM)

Deterministic DE MDDE
Adaptive DE JADE2

(b) WFG6 (S-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(c) WFG7 (NS-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(d) WFG9 (NS-MM)

Fig. 3: [Cr; F] trajectories of adaptive methods for 2 objectives

(a) WFG4 (S-MM) (b) WFG6 (S-UM) (c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Fig. 4: [Cr; F] trajectories of self-adaptive methods for 2 objectives

istic MDDE algorithm, which shows significant problems for the non-separable
WFG6 and WFG9 problems.

For each method, we plot the path of the average used F and Cr with respect
to the generation. We call this plot the trajectory of that method. The aver-
aged (over the 50 runs) trajectories of adaptive methods along with the MDDE
method are plotted in Figure 3 and the trajectories of the self-adaptive methods
are in Figure 4. The small crosses are plotted for each 10 generations and the
final reached value is marked by a large symbol. The optimal value of F and Cr
is marked by a black circle. Moreover, all graphs contain the contour lines of the
average normalized hypervolume obtained by parameter tuning.

It is immediately clear that all trajectories have different starting points.
This is because each PC mechanism has its own way of initialization. Next,
we see that each adaptive method seems to behave the same way across all
observed problems. That is, both JADE2 and OW-MOSaDE aim for the lower
values of Cr, while not adapting F much and PDCaDE seems to always converge
to the same point, regardless of where the optimal parameter combination is.
Conversely, the self-adaptive methods behave differently on each problem.

The situation is very similar for 3 objectives. The trajectories for the adap-
tive and deterministic methods in Figure 5 seem to behave indifferently to the
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Deterministic DE MDDE
Adaptive DE JADE2

(a) WFG4 (S-MM)

Deterministic DE MDDE
Adaptive DE JADE2

(b) WFG6 (S-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(c) WFG7 (NS-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(d) WFG9 (NS-MM)

Fig. 5: [Cr; F] trajectories of adaptive methods for 3 objectives

(a) WFG4 (S-MM) (b) WFG6 (S-UM) (c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Fig. 6: [Cr; F] trajectories of self-adaptive methods for 3 objectives

problem and to the number of objectives. On the other hand, the behavior of
self-adaptive methods in Figure 6 depends on the problem. Looking at the results
of parameter tuning in Figures 1 and 2 we see a possible explanation. The heat-
maps of normalized hypervolume for problems WFG4 and WFG6 have more
structure than those of WFG7 and WFG9. The contour lines are more evenly
distributed, which may help the algorithms find favorable parameter values. Con-
versely, the heat-maps for WFG7 and WFG9 have large plateaus associated with
favorable parameters, separated by steep cliffs from plateaus with bad parame-
ters. Consequently we see that on WFG4 and WFG6 problems, the trajectories
of self-adaptive methods aim correctly for the more favorable regions, while on
the WFG7 and WFG9 problems, the behavior seems more random.

4.3 Q problems

The performance heat-maps for the Q problems are in Figure 7. The contrast
with the data for WFG in Figures 1 and 2 is immediately visible. The area of fa-
vorable parameter combinations is relatively small. Moreover, the favorable area
is surrounded by steep cliffs. Even a small change in one parameter may mean
the difference between a successful convergence and total failure. On such hard
problems, the difference in performance of parameter control methods becomes
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(a) 2 objectives (b) 3 objectives (c) 4 objectives

Fig. 7: Average normalized hypervolume for the Q problem

Table 4: Average normalized hypervolume for the Q problem

2 objectives 3 objectives 4 objectives

start 0.000 (0.0e+00) 0.000 (0.0e+00) 0.000 (0.0e+00)

ideal 0.999 (2.1e-05) 0.783 (6.7e-04) 0.673 (2.4e-03)

MDDE 0.128 (2.8e-01) 0.732 (1.2e-01) 0.653 (5.7e-03)

a
d
a
p
ti

v
e JADE2 0.000 (0.0e+00) 0.175 (2.8e-01) 0.648 (5.8e-03)

OW-MOSaDE 0.000 (0.0e+00) 0.668 (1.1e-01) 0.654 (4.3e-03)

PDCaDE 0.000 (0.0e+00) 0.000 (0.0e+00) 0.659 (8.7e-03)

se
lf

-a
d
a
p
ti

v
e DEMOwSA 0.999 (2.1e-05) 0.783 (6.8e-04) 0.652 (5.8e-03)

jDE 0.745 (4.0e-01) 0.433 (3.7e-01) 0.651 (6.1e-03)

SAMDE 0.994 (1.5e-02) 0.778 (2.0e-03) 0.638 (7.6e-03)

SPDE 0.548 (4.6e-01) 0.640 (2.4e-01) 0.643 (6.7e-03)

apparent. The averages and standard deviations of 50 independent runs for 500
generations with a population size of 500 individuals are presented in Table 4.

On the 2-objective Q problem all the adaptive methods fail completely. Out
of 50 runs, not one of them approached close enough to the Pareto front. Some
minor success has been achieved by the deterministic MDDE method, but the
best performers are the self-adaptive methods. On the 3-objective problem, OW-
MOSaDE catches up, while the other adaptive methods are lagging. For the
4-objective problem, the performances even out. It may seem counterintuitive
that increasing the number of objectives makes the parameter control easier,
but looking at Figure 7 we see that the more objectives the Q problem has, the
bigger is the set of favorable parameter combinations.

The trajectories of the adaptive mechanisms in Figure 8 again seem to be
very similar for the 2, 3 and 4 objective Q problems. Disturbingly, they resemble
those of the WFG problems. The PDCaDE algorithm seems to always converge
to Cr = 0.4 and F = 0.8. The OW-MOSaDE cannot adapt the distribution of
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Adaptive DE JADE2

(a) 2 objectives

Deterministic DE MDDE
Adaptive DE JADE2

(b) 3 objectives

Deterministic DE MDDE
Adaptive DE JADE2

(c) 4 objectives

Fig. 8: [Cr; F] trajectories of adaptive methods for the Q problem.

(a) 2 objectives (b) 3 objectives (c) 4 objectives

Fig. 9: [Cr; F] trajectories of self-adaptive methods for the Q problem.

the F parameter and invariably pushes the value of Cr down. This makes sense
for the WFG problems, but it is counterproductive for the 2-objective Q prob-
lem. The JADE2 mechanism seems to be lured towards small values of Cr even
more. Both JADE2 and OW-MOSaDE try to adapt the parameters by learning
which parameters generate individuals which dominate another individual. This
suggests that for each problem the parameters with this property are similar
and that this property does not guarantee good performance. Of course, a more
detailed and rigorous investigation is suggested as future work.

The behavior of self-adaptive mechanisms in Figure 9 is completely different.
On the 2-objective problem, all self-adaptive mechanisms achieve at least half of
the possible hypervolume. This is even true for the SPDE mechanism, which does
not find the area of favorable parameter combinations. It seems that since the
parameters of SPDE are generated randomly, favorable parameter combinations
arise often enough to converge partially. The adaptive algorithms also generate
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their parameters randomly, but the centers of the random distributions from
which these parameters are generated are shifting in the wrong direction.

5 Conclusion

In this paper we compared various deterministic, adaptive, and self-adaptive
mechanisms of parameter control in multi-objective differential evolution. We
isolated the mechanisms and applied them to a single multi-objective algorithm.
We then tested this algorithm on a set of known benchmark problems as well
as one new problem. We measured the performance of these methods as well as
their behavior in terms of which parameters they found.

We found out that on the usual benchmark problems even the simple mech-
anisms can lead to results comparable with parameter tuning. On the new prob-
lem, which we proposed exactly because it can be optimized only by a small set
of parameters, the self-adaptive methods were the only ones that managed to
find a satisfactory Pareto front for all objective dimensionalities. The determin-
istic method achieved also some limited success, but it is hard to determine if
we can attribute this to luck or to the underlying quality of the method. Af-
ter examining the progress of the parameters used by the adaptive methods we
found out that each method evolves its parameters in a more or less problem
independent way, which seems undesirable.

For future work the behavior of adaptive mechanisms should be first con-
firmed to exist in other contexts, and if so, to be examined in detail and its
cause should be established. It would also be interesting to see if our results
hold for more modern DE algorithms.
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